Учебный центр «Резольвента»

Доктор физико-математических наук, профессор

К. Л. САМАРОВ

МАТЕМАТИКА

Учебно-методическое пособие по разделу

ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МОДЕЛИ

© К. Л. Самаров, 2009

© ООО «Резольвента», 2009

СОДЕРЖАНИЕ

1. ЛИНЕЙНАЯ МОДЕЛЬ МЕЖДУНАРОДНОЙ ТОРГОВЛИ	4
1.1. Исходные положения	4
1.2. Расчетные уравнения	4
2. СТАТИЧЕСКАЯ n - СЕКТОРНАЯ БАЛАНСОВАЯ МОДЕЛ	Ь
В. ЛЕОНТЬЕВА	7
2.1. Исходные положения	7
2.2. Расчетные уравнения	8
3. ДИНАМИЧЕСКИЕ ОДНОСЕКТОРНЫЕ БАЛАНСОВЫЕ МО	ДЕЛИ
В. ЛЕОНТЬЕВА	11
3.1. Модель Леонтьева с дискретным временем	11
3.1.1. Случай переменного потребления	11
3.1.1.1. Исходные положения	11
3.1.1.2. Расчетные уравнения	12
3.1.2. Случай постоянного потребления	13
3.1.2.1. Исходные положения	13
3.1.2.2. Расчетные уравнения	13
3.2. Модель Леонтьева с непрерывным временем	14
3.2.1. Случай переменного потребления	14
3.2.1.1. Исходные положения	14
3.2.1.2. Расчетное уравнение	15
3.2.2. Случай постоянного потребления	16
3.1.2.1. Исходные положения	16
3.1.2.2. Расчетное уравнение	16
4. МОДЕЛЬ ОПТИМИЗАЦИИ СОСТАВА ПОКУПКИ	16
4.1. Исходные положения.	16
4.2. Бюджетное множество. Поверхности безразличия	17
4.3. Примеры решения задач	18
5. МОДЕЛЬ РЫНКА ОДНОГО ТОВАРА	23
	2

OOO «Резольвента», <u>www.resolventa.ru</u> , <u>resolventa@list.ru</u> , (495) 509-28-10	
5.1. Функции спроса и предложения. Понятие эластичности	23
5.2. Средние и предельные значения функций	26
6. МОДЕЛИ ЭВАНСА УСТАНОВЛЕНИЯ РАВНОВЕСНОЙ ЦЕНЫ	
НА РЫНКЕ ОДНОГО ТОВАРА	27
6.1. Модель Эванса с непрерывным временем	27
6.1.1. Исходные положения.	27
6.1.2. Расчетное уравнение	28
6.2. Модель Эванса с дискретным временем	29
6.2.1. Исходные положения.	29
6.2.2. Расчетные уравнения	30
7. МОДЕЛЬ ВЫПУСКА ПРОДУКЦИИ	31
7.1. Понятие производственной функции	31
7.2. Производственная функция Кобба-Дугласа	33
8. ОДНОСЕКТОРНАЯ МОДЕЛЬ СОЛОУ С ПРОИЗВОДСТВЕННОЙ	
ФУНКЦИЕЙ КОББА-ДУГЛАСА	35
8.1. Исходные положения	35
8.2. Расчетные уравнения	36
ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ	39
ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ	42
ЛИТЕРАТУРА	45

1. ЛИНЕЙНАЯ МОДЕЛЬ МЕЖДУНАРОДНОЙ ТОРГОВЛИ

1.1. Исходные положения

Изучаемая модель основана на следующих положениях:

- 1. Рассматривается n стран $S_1, S_2, ..., S_n$, национальный доход которых, выраженный в одной и той же валюте, равен $x_1, x_2, ..., x_n$ денежных единиц, соответственно.
- 2. Считается, что *весь* национальный доход каждой из стран расходуется на закупки товаров, как внутри страны, так и у других стран.
- 3. Известна *структурная матрица международной торговли* $A = (a_{ij})$, каждый элемент a_{ij} которой равен *доле* национального дохода, которую страна S_i расходует на закупку товаров у страны S_i :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$
 (1.1.1)

- 4. Считается, что для каждой страны выполнено *условие бездефицитной торговли*, заключающееся в том, что выручка от внешней и внутренней торговли оказывается *не меньшей*, чем национальный доход страны.
 - 5. Известен суммарный национальный доход D всех n стран. Требуется найти вектор национальных доходов всех стран:

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}.$$

1.2. Расчетные уравнения

Если обозначить символом t_i выручку, полученную страной S_i от внутренней и внешней торговли, то будет справедливо соотношение:

$$t_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n. (1.2.1)$$

Из положения 4 вытекает, что для всех значений i=1,2,...,n выполняется неравенство $t_i \geq x_i$, а из положений 2 и 3 вытекает, что сумма элементов в каждом столбце матрицы A равняется 1.

Отсюда, используя соотношение (1.2.1), получаем:

$$\begin{split} &\sum_{i=1}^{n} \left(t_i - x_i \right) = \sum_{i=1}^{n} \left(a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n - x_i \right) = \\ &= x_1 \sum_{i=1}^{n} a_{i1} + x_2 \sum_{i=1}^{n} a_{i2} + \dots + x_n \sum_{i=1}^{n} a_{in} - \sum_{i=1}^{n} x_i = \\ &= x_1 + x_2 + \dots + x_n - \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i = 0. \end{split}$$

Следовательно, для всех значений $i=1,\,2,...,\,n$ выполнено равенство $t_i=x_i$, т.е.

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = x_i. (1.2.2)$$

Таким образом, справедливо матричное уравнение:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \tag{1.2.3}$$

которое означает, что вектор

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

является собственным вектором матрицы A с собственным значением 1.

Из уравнения (1.2.3) вытекает, что вектор \overrightarrow{X} удовлетворяет уравнению

$$(A-E)\overrightarrow{X} = 0, (1.2.4)$$

где символом E обозначена единичная матрица n - го порядка. Это уравнение дает возможность определить национальный доход каждой из стран, позволяющий осуществлять бездефицитную торговлю. В координатах уравнение (1.2.4) имеет вид:

$$\begin{pmatrix}
a_{11}^{-1} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22}^{-1} & \dots & a_{2n} \\
\dots & \dots & \dots & \dots \\
a_{n1} & a_{n2} & \dots & a_{nn}^{-1}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\dots \\
x_n
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
\dots \\
0
\end{pmatrix}.$$
(1.2.5)

Задача 1.2.1. Известна структурная матрица торговли трех стран:

$$A = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{3} \end{pmatrix}.$$

Суммарный национальный доход трех стран равен 900. Найти национальный доход каждой из стран, позволяющий осуществлять бездефицитную торговлю.

Решение. В рассматриваемом случае матричное уравнение (1.2.5) имеет вид:

$$\begin{pmatrix}
-1 & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{4} & -\frac{2}{3}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}.$$
(1.2.6)

Записывая уравнение (1.2.6) в форме системы линейных уравнений, получим:

$$\begin{cases} -x_1 + \frac{1}{4}x_2 + \frac{1}{3}x_3 = 0, \\ \frac{1}{2}x_1 - \frac{1}{2}x_2 + \frac{1}{3}x_3 = 0, \Leftrightarrow \\ \frac{1}{2}x_1 + \frac{1}{4}x_2 - \frac{2}{3}x_3 = 0, \end{cases} \Leftrightarrow \begin{cases} -12x_1 + 3x_2 + 4x_3 = 0, \\ 3x_1 - 3x_2 + 2x_3 = 0, \Leftrightarrow \\ 6x_1 + 3x_2 - 8x_3 = 0, \end{cases}$$

$$\Leftrightarrow \begin{cases} -12x_1 + 3x_2 + 4x_3 = 0, \\ -9x_2 + 12x_3 = 0, \Leftrightarrow \\ 9x_2 - 12x_3 = 0, \end{cases} \Leftrightarrow \begin{cases} -12x_1 + 3x_2 + 4x_3 = 0, \\ -3x_2 + 4x_3 = 0, \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} -12x_1 + 8x_3 = 0, \\ -3x_2 + 4x_3 = 0, \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{2}{3}d, \\ x_2 = \frac{4}{3}d, \\ x_3 = d, \end{cases}$$

где символом d обозначено произвольное число.

Теперь можно найти значения национальных доходов стран:

$$x_1 + x_2 + x_3 = \frac{2}{3}d + \frac{4}{3}d + d = 3d = 900 \Leftrightarrow$$

 $\Leftrightarrow d = 300, x_1 = 200, x_2 = 400, x_3 = 300.$

Ответ. $x_1 = 200, x_2 = 400, x_3 = 300.$

2. СТАТИЧЕСКАЯ n - СЕКТОРНАЯ БАЛАНСОВАЯ МОДЕЛЬ В. ЛЕОНТЬЕВА

2.1. Исходные положения

Изучаемая модель основана на следующих положениях:

- 1. Рассматривается замкнутый производственный комплекс, состоящий из n секторов $S_1, S_2, ..., S_n$, производящих и частично потребляющих произведенную комплексом продукцию.
 - 2. Известна *технологическая матрица* производственного комплекса $A = (a_{ii})$,

ООО «Резольвента», www.resolventa.ru, resolventa@list.ru, (495) 509-28-10 каждый элемент a_{ij} которой (коэффициент прямых затрат) равен доле выпуска продукции сектора S_i , потребляемой для нужд сектора S_j .

3. Комплекс должен поставить внешнему потребителю *вектор* конечной продукции (конечный продукт)

$$\vec{C} = \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix},$$

где символами c_1 , c_2 ,..., c_n обозначены объёмы продукции, поставляемой секторами $S_1, S_2, ..., S_n$, соответственно.

Требуется найти вектор выпуска продукции (валовой продукт)

$$\vec{X} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix},$$

где символами $x_1, x_2,..., x_n$ обозначены объёмы продукции, произведенной секторами $S_1, S_2,..., S_n$, соответственно.

Замечание. Здесь и далее будем считать, что все объемы продукции измерены в единицах стоимости.

2.2. Расчетные уравнения

Фундаментальный экономический закон, выраженный формулой:

$$egin{align*} Bаловой \\ npoдукт \end{bmatrix} = egin{align*} 3 ampamы \end{bmatrix} + egin{align*} K онечный \\ npoдукт \end{bmatrix},$$

и положения, лежащие в основе рассматриваемой модели, приводят к следующей системе уравнений:

$$x_i = \sum_{j=1}^{n} a_{ij} x_j + c_i, i = 1, 2, ..., n.$$
 (2.2.1)

Записывая уравнения (2.2.1) в матричной форме:

$$\overrightarrow{X} = A\overrightarrow{X} + \overrightarrow{C}, \qquad (2.2.2)$$

получаем:

$$(E-A)\overrightarrow{X} = \overrightarrow{C}, \qquad (2.2.3)$$

$$\overrightarrow{X} = (E - A)^{-1} \overrightarrow{C}, \qquad (2.2.4)$$

где символом E обозначена единичная матрица n - го порядка.

Формула (2.2.4) позволяет определить неизвестный вектор выпуска продукции \overrightarrow{X} по известному вектору конечного продукта \overrightarrow{C} и известной матрице коэффициентов прямых затрат A.

Если ввести в рассмотрение матрицу

$$B = (E - A)^{-1}, (2.2.5)$$

называемую *матрицей коэффициентов полных затрат*, то формула (2.2.4) принимает вид

$$\overrightarrow{X} = \overrightarrow{BC}. \tag{2.2.6}$$

Замечание. Элементы a_{ij} матрицы A являются числами, заключенными в пределах от нуля до единицы, причем сумма элементов каждой строки матрицы A не превосходит единицы.

Задача 2.2.1. Технологическая матрица замкнутого производственного комплекса, состоящего из трех секторов S_1, S_2 и S_3 , имеет вид:

$$A = \begin{pmatrix} 0.12 & 0.17 & 0 \\ 0.36 & 0.24 & 0.14 \\ 0.2 & 0 & 0.4 \end{pmatrix}.$$

Вектор конечной продукции

$$\vec{C} = \begin{pmatrix} 80.1 \\ 42.8 \\ 96 \end{pmatrix}.$$

Найти вектор выпуска продукции \overrightarrow{X} .

Решение. Поскольку

$$E - A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.12 & 0.17 & 0 \\ 0.36 & 0.24 & 0.14 \\ 0.2 & 0 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.88 & -0.17 & 0 \\ -0.36 & 0.76 & -0.14 \\ -0.2 & 0 & 0.6 \end{pmatrix},$$

то матричное уравнение (2.2.3), имеющее вид:

$$\begin{pmatrix} 0.88 & -0.17 & 0 \\ -0.36 & 0.76 & -0.14 \\ -0.2 & 0 & 0.6 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 80.1 \\ 42.8 \\ 96 \end{pmatrix},$$

можно переписать в виде следующей системы линейных уравнений:

$$\begin{cases}
0.88x_1 - 0.17x_2 &= 80.1, \\
-0.36x_1 + 0.76x_2 - 0.14x_3 &= 42.8, \\
-0.2x_1 &+ 0.6x_3 &= 96.
\end{cases}$$

Решим полученную систему уравнений методом Гаусса. С этой целью умножим первые два уравнения на 100, а последнее уравнение – на 10.

$$\begin{cases} 88x_1 - 17x_2 &= 8010 & 8081 & (a), \\ -36x_1 + 76x_2 - 14x_3 &= 4280 & 4306 & (b), \\ -2x_1 &+ 6x_3 &= 960 & 964 & (c). \end{cases}$$

Справа за вертикальной чертой сформируем столбец сумм коэффициентов каждого из уравнений (для контроля правильности вычислений), а первое, второе и третье уравнения системы обозначим символами (a), (b) и (c) соответственно.

Исключая теперь переменную x_1 из уравнений (a) и (b) с помощью уравнения (c) по схеме:

$$(a) + 44 \cdot (c),$$

 $(b) - 18 \cdot (c).$

получим систему из двух уравнений с двумя неизвестными

$$\begin{cases} -17x_2 + 264x_3 = 50250 & 50497 & (a_1), \\ 76x_2 - 122x_3 = -13000 & -13046 & (b_1). \end{cases}$$

Исключая переменную x_2 из уравнения (a_1) с помощью уравнения (b_1) по схеме:

$$76(a_1)+17(b_1)$$
,

получим уравнение с одной неизвестной

$$17990x_3 = 3598000 | 3615790 (a_2).$$

Из уравнения (a_2) находим неизвестное x_3 :

$$x_3 = \frac{3598000}{17990} = 200$$
.

Воспользовавшись уравнением (b_1), находим неизвестное x_2 :

$$x_2 = \frac{122x_3 - 13000}{76} = \frac{24400 - 13000}{76} = 150$$
.

Воспользовавшись уравнением (c), находим неизвестное x_1 :

$$x_1 = \frac{6x_3 - 960}{2} = \frac{1200 - 960}{2} = 120.$$

Ответ: $x_1 = 120$, $x_2 = 150$, $x_3 = 200$.

3. ДИНАМИЧЕСКИЕ ОДНОСЕКТОРНЫЕ БАЛАНСОВЫЕ МОДЕЛИ В. ЛЕОНТЬЕВА

3.1. Модель Леонтьева с дискретным временем

3.1.1. Случай переменного потребления

3.1.1.1. Исходные положения

Изучаемая модель основана на следующих положениях:

- 1. Рассматривается производственный сектор, производящий и частично потребляющий произведенную продукцию.
 - 2. Сектор работает k лет (k натуральное число).

- 3. Выпуск продукции сектора в i м году (i=1,2,...,k) обозначается символом x_i .
 - 4. Известен выпуск продукции сектора x_1 .
- 5. Известна доля a выпуска продукции сектора, потребляемая самим сектором, т.е. число, заключенное в пределах 0 < a < 1.
- 6. В i м году (i=1,2,...,k) конечный продукт сектора полностью расходуется на инвестиции I_i и потребление P_i , которые определяются по формулам

$$I_i = q(x_{i+1} - x_i), P_i = px_i$$

с известными числовыми коэффициентами q и p.

Требуется найти последовательность выпусков продукции x_i , i = 1, 2, ..., k.

3.1.1.2. Расчетные уравнения

На основании приведенных в предыдущем параграфе положений составим следующее рекуррентное уравнение модели:

$$x_i - ax_i = q(x_{i+1} - x_i) + px_i, i = 1, 2,...$$
 (3.1.1)

Преобразовав уравнение (3.1.1) к более удобному виду:

$$x_{i+1} = \left(\frac{1 - a - p + q}{q}\right) x_i, i = 1, 2, ...,$$
(3.1.2)

заметим, что формула (3.1.2) задает геометрическую прогрессию с первым членом x_1 и знаменателем $\frac{1-a-p+q}{q}$. Следовательно,

$$x_n = x_1 \left(\frac{1 - a - p + q}{q}\right)^{n-1}, \quad n = 1, 2, \dots$$
 (3.1.3)

Формула (3.1.3) завершает исследование рассматриваемого случая модели.

3.1.2. Случай постоянного потребления

3.1.2.1. Исходные положения

В изучаемой модели выполняются все положения, приведенные в параграфе 3.1.1, за исключением положения 6, которое заменяется следующим положением 6':

6'. В i - м году (i=1,2,...,k) конечный продукт сектора полностью расходуется на инвестиции I_i и потребление P_i , которые определяются по формулам:

$$I_i = q(x_{i+1} - x_i), P_i = p$$

где q и p – известные числа.

3.1.2.2. Расчетные уравнения

На основании положений, описанных в параграфе 3.1.3, составим следующее рекуррентное уравнение модели:

$$x_i - ax_i = q(x_{i+1} - x_i) + p, i = 1, 2,...$$
 (3.1.4)

Преобразуем уравнение (3.1.4) к более удобному виду:

$$x_{i+1} = \left(\frac{1-a+q}{q}\right)x_i - \frac{p}{q}, \ i = 1, 2, \dots$$
 (3.1.5)

Введем новую переменную по формуле:

$$y_i = x_i + \beta, \tag{3.1.6}$$

где β — некоторое число, которое мы определим чуть позже, и совершим в уравнении (3.1.5) замену переменных

$$\begin{cases} x_i = y_i - \beta, \\ x_{i+1} = y_{i+1} - \beta. \end{cases}$$
 (3.1.7)

В результате уравнение (3.1.5) примет следующий вид:

$$y_{i+1} = \left(\frac{1-a+q}{q}\right)y_i + \frac{\beta(a-1)-p}{q}, \ i = 1, 2, \dots$$
 (3.1.8)

Если теперь в качестве числа β выбрать число

$$\beta = \frac{p}{a-1},\tag{3.1.9}$$

то уравнение (3.1.8) преобразуется к следующему виду:

$$y_{i+1} = \left(\frac{1-a+q}{q}\right) y_i, \ i = 1, 2, \dots$$
 (3.1.10)

Формула (3.1.10) задает геометрическую прогрессию с первым членом y_1 и знаменателем $\frac{1-a+q}{a}$. Поэтому,

$$y_n = y_1 \left(\frac{1-a+q}{q}\right)^{n-1}, \quad n = 1, 2, ...,$$
 (3.1.11)

откуда с помощью формул (3.1.6) и (3.1.9) получаем:

$$x_n + \frac{p}{a-1} = \left(x_1 + \frac{p}{a-1}\right) \left(\frac{1-a+q}{q}\right)^{n-1}, \quad n = 1, 2, ...,$$

$$x_n = \left(x_1 - \frac{p}{1-a}\right) \left(\frac{1-a+q}{q}\right)^{n-1} + \frac{p}{1-a}, \quad n = 1, 2, \dots$$
 (3.1.12)

Формула (3.1.12) дает возможность найти валовой продукт x_n , n=1,2,..., если известен валовой продукт за первый год x_1 , и завершает исследование модели.

3.2. Модель Леонтьева с непрерывным временем

3.2.1. Случай переменного потребления

3.2.1.1. Исходные положения

Изучаемая модель основана на следующих положениях:

- 1. Рассматривается производственный сектор, производящий и частично потребляющий произведенную продукцию.
- 2. Выпуск продукции сектора в момент времени $t \ (t \ge 0)$ обозначается символом x = x(t).
- 3. Известна доля a выпуска продукции сектора, потребляемая самим сектором, т.е. число, заключенное в пределах 0 < a < 1.
- 4. Конечный продукт сектора полностью расходуется на инвестиции I = I(t) и потребление P = P(t), которые определяются по формулам

$$I(t) = qx'(t), \quad P(t) = px(t)$$

с известными числовыми коэффициентами q и p.

Требуется найти формулу для выпуска продукции x = x(t), если известно значение $x(0) = x_0$.

3.2.1.2. Расчетное уравнение

На основании приведенных в предыдущем параграфе положений заключаем, что в рассматриваемой модели выпуск продукции является решением следующей задачи Коши:

$$\begin{cases} x - ax = qx' + px, \\ x(0) = x_0. \end{cases}$$
 (3.2.1)

Преобразуем задачу Коши (3.2.1) к стандартному виду:

$$\begin{cases} x' = \left(\frac{1-a-p}{q}\right)x, \\ x(0) = x_0. \end{cases}$$
 (3.2.1)

Решением задачи Коши (3.2.1) является функция

$$x(t) = x_0 e^{\left(\frac{1-a-p}{q}\right)t},\tag{3.2.2}$$

определяющая выпуск продукции в зависимости от времени.

3.2.2. Случай постоянного потребления

3.2.2.1. Исходные положения

В изучаемой модели выполняются все положения, приведенные в параграфе 3.2.1, за исключением положения 4, которое заменяется следующим положением 4'.:

I=I(t) и потребление P=P(t), которые определяются по формулам

$$I(t) = qx'(t), \quad P(t) = p$$

где q и p — известные постоянные числа.

3.2.2.2. Расчетное уравнение

На основании приведенных в предыдущем параграфе положений заключаем, что в рассматриваемой модели выпуск продукции является решением следующей задачи Коши:

$$\begin{cases} x - ax = qx' + p, \\ x(0) = x_0. \end{cases}$$
 (3.2.3)

Преобразуем задачу Коши (3.2.3) к стандартному виду:

$$\begin{cases} x' = \left(\frac{1-a}{q}\right)x - \frac{p}{q}, \\ x(0) = x_0. \end{cases}$$
 (3.2.4)

Решением задачи Коши (3.2.4) является функция

$$x(t) = \left(x_0 - \frac{p}{1-a}\right)e^{\left(\frac{1-a}{q}\right)t} + \frac{p}{1-a},$$
(3.2.5)

определяющая выпуск продукции в зависимости от времени.

4. МОДЕЛЬ ОПТИМИЗАЦИИ СОСТАВА ПОКУПКИ

4.1. Исходные положения

Изучаемая модель основана на следующих положениях:

- 1. Покупатель собирается потратить денежную сумму, не превышающую S рублей, на покупку товаров $T_1, T_2, ..., T_n$, где n натуральное число.
- 2. Товары $T_1, T_2, ..., T_n$ продаются по цене $p_1, p_2, ..., p_n$ рублей, соответственно.
- 3. Считается, что покупка характеризуется некоторой *функцией* полезности

$$u = u(x_1, x_2, ..., x_n),$$

где символами $x_1, x_2, ..., x_n$ обозначены *количества единиц* товаров $T_1, T_2, ..., T_n$, составляющих покупку, соответственно.

Требуется определить такой состав покупки $x_1^*, x_2^*, ..., x_n^*$, при котором функция полезности $u = u(x_1, x_2, ..., x_n)$ достигает максимума.

Замечание. Рассматриваемую модель называют также моделью (задачей) оптимизации выбора потребителя, моделью поведения потребителя или моделью потребительского спроса.

4.2. Бюджетное множество. Поверхности безразличия

Из приведенных в предыдущем параграфе положений вытекает, что покупка, состоящая из товаров $T_1, T_2, ..., T_n$ в количестве $x_1, x_2, ..., x_n$ единиц, соответственно, стоит

$$p = p_1 x_1 + p_2 x_2 + ... + p_n x_n$$
 (pyб.),

причем справедливы неравенства

$$\begin{cases}
p_1 x_1 + p_2 x_2 + \dots + p_n x_n \le S, \\
x_i \ge 0, i = 1, 2, \dots, n.
\end{cases}$$
(4.2.1)

- Множество точек n мерного пространства, координаты $x_1, x_2, ..., x_n$ которых удовлетворяют неравенствам (4.2.1), называется бюджетным множеством.
- Множество точек n мерного пространства, координаты $x_1, x_2, ..., x_n$ которых удовлетворяют системе

$$\begin{cases}
 p_1 x_1 + p_2 x_2 + \dots + p_n x_n = S, \\
 x_i \ge 0, i = 1, 2, \dots, n,
\end{cases}$$
(4.2.2)

называют верхней границей бюджетного множества.

• Поверхности уровня функции полезности, т.е. множества точек n- мерного пространства, координаты $x_1, x_2, ..., x_n$ которых удовлетворяют уравнению

$$u(x_1, x_2, ..., x_n) = c$$
,

где c – некоторое число, называют *поверхностями безразличия* (поверхностями равноценности).

• В случае, когда n = 2, поверхности безразличия называют *кривыми* безразличия (кривыми равноценности).

Целью изучаемой модели является нахождение такой точки бюджетного множества, в которой функция полезности принимает наибольшее значение среди всех точек бюджетного множества. Если рассмотреть множество поверхностей безразличия, то для большинства функций полезности, используемых в экономических исследованиях, существует единственная поверхность, которая касается верхней границы бюджетного множества. В точке касания и достигается максимум функции полезности.

4.3. Примеры решения задач

Задача 4.3.1. Покупатель собирается купить x единиц одного товара по цене 30 руб. за единицу и y единиц другого товара по цене 20 руб. за

единицу, истратив на всю покупку не более 600 рублей. Функция полезности этих товаров задается формулой

$$u = u(x, y) = x^2 y^3$$
. (4.2.3)

Найти оптимальный состав покупки, доставляющий максимум функции полезности.

Решение. По условию задачи бюджетное множество состоит из точек координатной плоскости, координаты (x, y) которых удовлетворяют следующей системе неравенств:

$$\begin{cases} 30x + 20y \le 600, \\ x \ge 0, \\ y \ge 0. \end{cases}$$
 (4.2.4)

Как показано на рис. 1, неравенства (4.2.4) задают на координатной плоскости прямоугольный треугольник OAB, гипотенуза AB которого является верхней границей бюджетного множества и в области $0 \le x \le 20$ определяется уравнением

$$3x + 2y = 60, (4.2.5)$$

В точках отрезков OA и OB функция полезности (4.2.3) обращается в нуль.

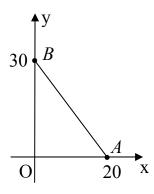


Рис. 1

Функция полезности (4.2.3) является непрерывной функцией двух переменных и достигает на множестве OAB наибольшего значения. Для того, чтобы найти это значение, найдем её критические точки:

$$\begin{cases} \frac{\partial u}{\partial x} = 2xy^3 = 0, \\ \frac{\partial u}{\partial y} = 3x^2y^2 = 0, \end{cases} \Leftrightarrow \begin{cases} x = 0, \\ 0 \le y \le 30 \end{cases} \cup \begin{cases} y = 0, \\ 0 \le x \le 20. \end{cases}$$
 (4.2.6)

Из (4.2.6) вытекает, что критические точки функции (4.2.3) расположены на катетах OA и OB прямоугольного треугольника OAB, причем в каждой из них значение функции равно нулю. Поскольку в области $\{0 < x, 0 < y\}$ функция (4.2.3) принимает только положительные значения, то её наибольшее значение на бюджетном множестве должно достигаться в точках отрезка AB.

Следовательно, необходимо проанализировать поведение функции полезности на отрезке AB. С этой целью выразим из уравнения (4.2.5) переменную y через переменную x:

$$y = 30 - \frac{3}{2}x. (4.2.7)$$

Подставляя выражение (4.2.7) в формулу (4.2.3), получим функцию v(x):

$$v(x) = x^{2}y^{3}\Big|_{y=30-\frac{3}{2}x} = x^{2}\left(30 - \frac{3}{2}x\right)^{3}.$$
 (4.2.8)

Найдем критические точки функции v(x) на множестве 0 < x < 20:

$$v'(x) = 2x \left(30 - \frac{3}{2}x\right)^3 - \frac{9}{2}x^2 \left(30 - \frac{3}{2}x\right)^2 = x \left(30 - \frac{3}{2}x\right)^2 \left[2\left(30 - \frac{3}{2}x\right) - \frac{9}{2}x\right] =$$

$$= \frac{1}{2}x \left(30 - \frac{3}{2}x\right)^2 (120 - 15x) = \frac{135}{8}x(20 - x)^2 (8 - x) = 0.$$

Отсюда вытекает, что точка x = 8 — единственная критическая точка функции v(x) на множестве $\{0 < x < 20\}$. Поскольку при переходе через эту точку

ООО «Резольвента», <u>www.resolventa.ru</u>, <u>resolventa@list.ru</u>, (495) 509-28-10 производная v'(x) меняет знак с — на +, то точка x=8 является точкой максимума.

Теперь из формулы (4.2.7) найдем соответствующее значение переменной y:

$$y = 30 - \frac{3}{2}x = 30 - \frac{3}{2} \cdot 8 = 18.$$

Таким образом, в точке (x = 8, y = 18) функция полезности достигает наибольшего значения на бюджетном множестве, причем

$$u_{\text{max}} = u(8,18) = 8^2 \cdot 18^3 = 373248.$$

Ответ: оптимальной является покупка 8 единиц первого товара и 18 единиц второго товара.

Задача 4.3.2. Покупатель собирается купить x единиц первого товара по цене 10 руб. за единицу, y единиц второго товара по цене 20 руб. за единицу и z единиц третьего товара по цене 30 руб. за единицу, истратив на всю покупку не более 900 рублей. Функция полезности задается формулой

$$u = u(x, y, z) = xyz$$
. (4.2.10)

Найти оптимальный состав покупки, доставляющий максимум функции полезности.

Решение. По условию задачи бюджетное множество состоит из точек трехмерного пространства, координаты (x, y, z) которых удовлетворяют следующей системе неравенств:

$$\begin{cases} 10x + 20y + 30z \le 900, \\ x \ge 0, \\ y \ge 0, \\ z \ge 0. \end{cases}$$
 (4.2.11)

Перепишем систему неравенств (4.2.11) в виде

$$\begin{cases}
 x + 2y + 3z - 90 \le 0, \\
 -x \le 0, \\
 -y \le 0, \\
 -z \le 0,
\end{cases}$$
(4.2.12)

и воспользуемся теоремой Куна-Таккера. С этой целью введем функцию Лагранжа

$$L = L(x, y, z, \lambda_1, \lambda_2, \lambda_3, \lambda_4) = xyz + \lambda_1(x + 2y + 3z - 90) - \lambda_2 x - \lambda_3 y - \lambda_4 z, \qquad (4.2.13)$$

где $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ – множители Лагранжа.

По теореме Куна-Таккера, если в точке (x, y, z) достигается максимум функции (4.2.10) при наличии ограничений (4.2.12), то в этой точке выполняются следующие условия:

$$\begin{cases} yz = -\lambda_1 + \lambda_2, \\ xz = -2\lambda_1 + \lambda_3, \\ xy = -3\lambda_1 + \lambda_4, \\ \lambda_1(x + 2y + 3z - 90) = 0, \ \lambda_2 x = 0, \ \lambda_3 y = 0, \ \lambda_4 z = 0, \\ \lambda_1 \le 0, \ \lambda_2 \le 0, \ \lambda_3 \le 0, \ \lambda_4 \le 0. \end{cases}$$

$$(4.2.14)$$

Рассмотрим сначала случай $\lambda_1 = 0$.

Поскольку произведения yz, xz и xy неотрицательные, а множители Лагранжа λ_1 , λ_2 и λ_3 неположительные, то из первого, второго и третьего уравнений системы (4.2.14) вытекает соотношение

$$x = y = z = \lambda_2 = \lambda_3 = \lambda_4 = 0,$$
 (4.2.15)

которое означает, что точка $M_1 = (0,0,0)$ является стационарной. Однако в этой точке неотрицательная функция полезности обращается в нуль, и достигнуть максимума не может. Следовательно, эта точка должна быть отброшена.

Теперь рассмотрим случай $\lambda_1 < 0$.

Умножая первое, второе и третье уравнения системы (4.2.14) на x, y и z, соответственно, и приравнивая правые части уравнений, получим соотношение

$$xyz = -\lambda_1 x = -2\lambda_1 y = -3\lambda_1 z,$$

следствием которого является соотношение

$$x = 2y = 3z. (4.2.16)$$

Соединяя уравнение (4.2.16) и уравнение x+2y+3z=90 в систему уравнений, найдем значения x, y и z:

$$\begin{cases} x = 2y = 3z, \\ x + 2y + 3z = 90 \end{cases} \Leftrightarrow x = 2y = 3z = 30 \Leftrightarrow \begin{cases} x = 30, \\ y = 15, \\ z = 10. \end{cases}$$
 (4.2.17)

Таким образом, точка $M_2 = (30,15,10)$ является стационарной, причем в этой точке функция полезности достигает максимума на бюджетном множестве и принимает значение

$$u_{\text{max}} = u(30,15,10) = 30 \cdot 15 \cdot 10 = 4500.$$

Ответ: оптимальная покупка состоит из 30 единиц первого товара, 15 единиц второго товара и 10 единиц третьего товара.

5. МОДЕЛЬ РЫНКА ОДНОГО ТОВАРА

5.1. Функции спроса и предложения. Понятие эластичности

Отдавая дань традиции, используем первую букву английского слова price (цена) для обозначения аргумента, а первые буквы английских слов demand (спрос) и supply (предложение) для обозначения двух важных функций — функции спроса D = D(p) на некоторый товар и функции предложения S = S(p) этого товара.

Если спрос на товар полностью удовлетворен, то выручка R(p) от продажи товара определяется по формуле

$$R(p) = pD(p). (5.1.1)$$

Взяв от обеих частей формулы (5.1.1) производную, получим соотношение

$$R'(p) = D(p) + pD'(p) = D(p) \left(1 + \frac{pD'(p)}{D(p)} \right) = D(p) \left(1 + ED(p) \right), (5.1.2)$$

где использовано обозначение

$$ED(p) = \frac{pD'(p)}{D(p)}. (5.1.3)$$

В случае, когда ED(p)+1<0, выручка является убывающей функцией от цены товара. Если ED(p)+1=0, то выручка является постоянной функцией и от цены товара не зависит. Если же ED(p)+1>0, то выручка является возрастающей функцией от цены товара.

• Функция ED(p) определяет в точке p коэффициент эластичности функции спроса, который для произвольной функции F(x) в точке x вычисляется по формуле

$$EF = EF(x) = \frac{xF'(x)}{F(x)}.$$
(5.1.4)

Пример 5.1.1. У каких функций коэффициент эластичности в каждой точке равен одному и тому же числу k?

Решение. Воспользовавшись формулой (5.1.4), получаем:

$$\frac{xF'(x)}{F(x)} = k \Leftrightarrow \frac{dF}{F(x)} = k\frac{dx}{x} \Leftrightarrow d\left(\ln|F(x)|\right) = kd\left(\ln|x|\right) \Leftrightarrow$$

$$\Leftrightarrow \ln|F(x)| = \ln|x|^k + \ln|c| \Leftrightarrow F(x) = cx^k,$$
(5.1.5)

где c — произвольное число.

Ответ. Коэффициент эластичности постоянен лишь у степенных функций $F(x) = cx^k$, причем совпадает с показателем степени.

• Функцию F(x) называют эластичной в точке x, если в этой точке выполнено неравенство |EF(x)| > 1. Если же в точке x выполнено неравенство $|EF(x)| \le 1$, то функцию F(x) называют неэластичной в точке x

В условиях развитого конкурентного рынка спрос является убывающей функцией от цены товара, а предложение — возрастающей. Если спрос на товар задается функцией $D(p) = cp^{-n}$, где c и n — положительные числа, то в случае n > 1 спрос эластичен по цене p. Если же $n \le 1$, то спрос неэластичен по цене p. Если предложение на товар задается функцией $D(p) = cp^n$, где c и n — положительные числа, то в случае n > 1 предложение эластично по цене p, а в случае $n \le 1$ — неэластично.

Пример 5.1.2. Найти коэффициент эластичности функции $F(x) = e^{-3x^2}$. **Решение.** Воспользовавшись формулой (5.1.4), получаем:

$$EF(x) = \frac{xF'(x)}{F(x)} = \frac{xe^{-3x^2}(-6x)}{e^{-3x^2}} = -6x^2.$$

Ответ. $EF(x) = -6x^2$.

Пример 5.1.3. При некотором значении цены товара коэффициент эластичности спроса на товар равен 3. Что, приблизительно, произойдет со спросом на товар, если цена увеличится на 2%?

Решение. Перепишем формулу (5.1.3) в следующем виде:

$$dD = D \cdot ED(p) \cdot \frac{dp}{p}.$$
 (5.1.6)

Из формулы (5.1.6) вытекает приближенное равенство:

$$\Delta D \approx D \cdot ED(p) \cdot \frac{\Delta p}{p}$$
,

откуда, воспользовавшись данными условия задачи, получаем:

$$\Delta D \approx D \cdot 3 \cdot 0.02 = 0.06 \cdot D.$$

Ответ. Спрос увеличивается, приблизительно, на 6%.

• Цену p_0 , при которой значения функций спроса и предложения совпадают, называют *равновесной ценой*. Для того, чтобы найти равновесную цену, нужно решить уравнение

$$D(p) = S(p). \tag{5.1.7}$$

Пример 5.1.4. Найти равновесную цену в случае, когда

$$D(p) = \frac{4}{p^2} + 5$$
, $S(p) = p^2 + 2$.

Решение. Воспользовавшись уравнением (5.1.7), получаем:

$$\frac{4}{p^2} + 5 = p^2 + 2 \Leftrightarrow \frac{4}{p^2} = p^2 - 3 \Leftrightarrow p^4 - 3p^2 - 4 = 0 \Leftrightarrow$$
$$\Leftrightarrow p^2 = 4 \Leftrightarrow p = 2.$$

Ответ. Равновесная цена равна 2.

5.2. Средние и предельные значения функций

Средним значением функции F(x) называется функция, которая обозначается AF(x) и определяется по формуле

$$AF = AF(x) = \frac{F(x)}{x}$$
.

Средние значения функций прибыли, издержек, спроса и т. д. носят названия *средней* прибыли, *средних* издержек, *среднего* спроса и т. д., соответственно, и часто используются в экономике.

В экономике *производную от функций* прибыли, спроса и т. д. принято называть *предельной* (*маржинальной*) прибылью, *предельным* (*маржинальным*) спросом и т. д., соответственно. При этом используется обозначение

$$MF = MF(x) = F'(x)$$
.

Из формулы (5.1.4) следует, что средние и маржинальные значения связаны с коэффициентом эластичности функции по формуле

$$EF = \frac{MF}{AF},$$

которая, например, для функции спроса означает, что коэффициент эластичности спроса равен отношению маржинального и среднего спроса.

Если взять производную от функции AF , то можно провести следующие вычисления:

$$AF'(x) = \left(\frac{F(x)}{x}\right)' = \frac{xF'(x) - F(x)}{x^2} = 0 \Leftrightarrow$$

$$\Leftrightarrow xF'(x) - F(x) \Leftrightarrow xF'(x) = F(x) \Leftrightarrow$$

$$\Leftrightarrow \frac{xF'(x)}{F(x)} = 1 \Leftrightarrow EF(x) = 1.$$

Таким образом, равенство единице коэффициента эластичности функции является необходимым условием наличия экстремума для среднего значения этой функции.

6. МОДЕЛИ ЭВАНСА УСТАНОВЛЕНИЯ РАВНОВЕСНОЙ ЦЕНЫ НА РЫНКЕ ОДНОГО ТОВАРА

6.1. Модель Эванса с непрерывным временем

6.1.1. Исходные положения

Изучаемая модель основана на следующих положениях:

1. Цена товара является функцией от времени

$$p = p(t), t \ge 0$$
.

2. Предложение является функцией от цены товара в момент времени t и определяется формулой

$$S = S(t) = S(p(t)) = a + bp,$$

где a и b – известные положительные числа.

3. Спрос является функцией от цены товара в момент времени t и определяется формулой

$$D = D(t) = D(p(t)) = c - dp,$$

где c и d – известные положительные числа.

4. Считается, что цена товара выражается через спрос и предложение по формуле

$$\frac{dp}{dt} = \gamma(D(t) - S(t)),$$

где у – известное положительное число.

5. В момент времени t=0 цена товара известна и равна p_0 . Требуется найти равновесную цену товара.

6.1.2. Расчетное уравнение

Основываясь на положениях, перечисленных в параграфе 6.1.1., составим расчетное уравнение модели:

$$\frac{dp}{dt} = -\gamma(b+d)p + \gamma(c-a), \tag{6.1.1}$$

которое является линейным неоднородным дифференциальным уравнением первого порядка с постоянными коэффициентами. Общее решение уравнения (6.1.1) имеет вид

$$p = \alpha e^{-\gamma (b+d)t} + \frac{c-a}{b+d},$$
 (6.1.2)

где α — произвольное число. Требуется найти решение уравнения (6.1.2), удовлетворяющее начальному условию

$$p(t=0) = p_0. (6.1.3)$$

С этой целью подставим в формулу (6.1.2) значение t = 0:

$$p(t=0) = \alpha + \frac{c-a}{b+d} = p_0.$$

Следовательно,

$$\alpha = p_0 - \frac{c - a}{b + d},$$

и решение задачи Коши (6.1.1), (6.1.3) имеет вид:

$$p = \left(p_0 - \frac{c - a}{b + d}\right)e^{-\gamma(b + d)t} + \frac{c - a}{b + d}.$$
 (6.1.4)

Переходя в формуле (6.1.4) к пределу при $t \to +\infty$, получим соотношение

$$p^* = \lim_{t \to \infty} \left[\left(p_0 - \frac{c - a}{b + d} \right) e^{-\gamma(b + d)t} + \frac{c - a}{b + d} \right] = \frac{c - a}{b + d}, \tag{6.1.5}$$

где символом p^* обозначена *предельная равновесная цена*. Исследование модели завершено.

6.2. Модель Эванса с дискретным временем

6.2.1. Исходные положения

Изучаемая модель основана на следующих положениях:

- 1. Товар поступает на рынок в течение k равных промежутков времени, где k натуральное число.
- 2. Цена товара в течение одного промежутка времени не изменяется и обозначается символами $p_1, p_2, ..., p_k$ в периоды времени 1, 2, ..., k, соответственно.
- 3. Предложение зависит от цены товара в *предыдущем* промежутке времени и вычисляется по формуле

$$S_i = S(p_{i-1}) = a + bp_{i-1}, i = 1, 2, ..., k$$

где a и b – известные положительные числа.

4. Спрос зависит от цены товара в *текущем* промежутке времени и вычисляется по формуле

$$D_i = D(p_i) = c - dp_i, i = 1, 2, ..., k$$

где c и d – известные положительные числа.

5. В начальный момент времени цена товара известна и равна $\,p_0^{}\,.$ Требуется найти равновесную цену товара.

<u>Замечание</u>. Рассматриваемую модель называют также моделью установления равновесной цены на рынке с запаздыванием предложения.

6.2.2. Расчетные уравнения

Основываясь на равенстве спроса и предложения, составим следующее рекуррентное уравнение модели:

$$c - dp_i = a + bp_{i-1}, i = 1, 2,...$$
 (6.2.1)

Преобразуем уравнение (6.2.1) к более удобному виду:

$$p_i = -\frac{b}{d} p_{i-1} + \frac{c-a}{d}, \ i = 1, 2, \dots$$
 (6.2.2)

Введем новую переменную по формуле:

$$y_i = p_i + \beta, \tag{6.2.3}$$

где β — некоторое число, которое определим чуть позже, и совершим в уравнении (6.2.2) замену переменных

$$\begin{cases}
 p_{i-1} = y_{i-1} - \beta, \\
 p_i = y_i - \beta.
\end{cases}$$
(6.2.4)

В результате уравнение (6.2.2) примет следующий вид:

$$y_i = -\frac{b}{d}y_{i-1} + \beta \left(\frac{b+d}{d}\right) + \left(\frac{c-a}{d}\right), i = 1, 2, ...$$
 (6.2.5)

Если теперь в качестве числа β выбрать число

$$\beta = -\frac{c - a}{b + d},\tag{6.2.6}$$

то уравнение (6.2.5) преобразуется к следующему виду:

$$y_i = -\frac{b}{d}y_{i-1}, i = 1, 2,...$$
 (6.2.7)

Формула (6.2.7) задает геометрическую прогрессию с первым членом y_0 и знаменателем $-\frac{b}{d}$. Поэтому,

$$y_i = y_0 \left(-\frac{b}{d}\right)^i, \quad i = 1, 2, ...,$$
 (6.2.8)

откуда с помощью формул (6.2.4) и (6.2.6) получаем:

$$p_{i} + \beta = (p_{0} + \beta) \left(-\frac{b}{d} \right)^{i}, \quad i = 1, 2, ...,$$

$$p_{i} = \left(p_{0} - \frac{c - a}{b + d} \right) \left(-\frac{b}{d} \right)^{i} + \frac{c - a}{b + d}, \quad i = 1, 2,$$
(6.2.9)

Формула (6.2.9) определяет равновесную цену товара в течение промежутка времени с номером i=1,2,..., если известна начальная цена товара p_0 .

В случае, когда |b| < |d|, существует предел равновесных цен товара:

$$\lim_{i \to \infty} p_i = \lim_{i \to \infty} \left[\left(p_0 - \frac{c - a}{b + d} \right) \left(-\frac{b}{d} \right)^i + \frac{c - a}{b + d} \right] = \frac{c - a}{b + d}, \tag{6.2.10}$$

который носит название предельной равновесной цены.

Исследование модели завершено.

7. МОДЕЛЬ ВЫПУСКА ПРОДУКЦИИ

7.1. Понятие производственной функции

Функцию, устанавливающую зависимость между использованными в процессе производства ресурсами и выпуском продукции, называют производственной функцией.

Если обозначить символом Z выпуск продукции и рассмотреть два основных производственных ресурса, а именно, капитал K и труд L, то соответствующая производственная функция примет вид

$$Z = F(K, L).$$
 (7.1.1)

Замечание. Для обозначения капитала и труда здесь использованы первые буквы немецкого слова Kapital (капитал) и английского слова Labour (труд).

• Частную производную от функции (7.1.1) по переменной K обозначают MP_K и называют предельным продуктом капитала (предельной производительностью капитала, предельной фондоотдачей):

$$MP_K = \frac{\partial F(K,L)}{\partial K}$$
.

• Частную производную от функции (7.1.1) по переменной L обозначают MP_L и называют предельным продуктом труда (предельной производительностью труда):

$$MP_L = \frac{\partial F(K,L)}{\partial L}$$
.

• Функцию

$$AP_K = \frac{F(K, L)}{K}$$

называют средним продуктом капитала (средней производительностью капитала, средней фондоотдачей);

• Функцию

$$AP_L = \frac{F(K, L)}{L}$$

называют *средним продуктом труда* (*средней производительностью труда*); Если рассмотреть какую-нибудь линию уровня функции (7.1.1)

$$F(K,L) = const, (7.1.2)$$

и взять от обеих частей равенства (7.1.2) первый дифференциал, то получится формула

$$\frac{\partial F(K,L)}{\partial K}dK + \frac{\partial F(K,L)}{\partial L}dL = 0,$$

следствием которой является формула

$$-\frac{dK}{dL} = \frac{\left(\frac{\partial F(K,L)}{\partial L}\right)}{\left(\frac{\partial F(K,L)}{\partial K}\right)}\Big|_{F=const} = \frac{MP_L}{MP_K}\Big|_{F=const}.$$
 (7.1.3)

ullet Функцию, определяемую формулой (7.1.3), обозначают $\mathit{MRTS}_{L,K}$ и называют предельной нормой замещения капитала трудом:

$$MRTS_{L,K} = \frac{MP_L}{MP_K}\bigg|_{F=const} = -\frac{dK}{dL}\bigg|_{F=const}.$$

• Функцию

$$EF_K = \frac{K}{F(K,L)} \left(\frac{\partial F(K,L)}{\partial K} \right)$$

называют коэффициентом эластичности производственной функции по капиталу.

• Функцию

$$EF_L = \frac{L}{F(K,L)} \left(\frac{\partial F(K,L)}{\partial L} \right)$$

называют коэффициентом эластичности производственной функции по труду.

Для коэффициентов эластичности производственной функции выполнены следующие соотношения:

$$EF_K = \frac{MP_K}{AP_K}, \ EF_L = \frac{MP_L}{AP_L}.$$

7.2. Производственная функция Кобба-Дугласа

Производственная функция, заданная с помощью формулы

$$Z = Z(K, L) = aK^{m}L^{n},$$
 (7.2.1)

где a, m и n – числа, удовлетворяющие неравенствам

называется производственной функцией Кобба-Дугласа.

Функция Кобба-Дугласа обладает следующими свойствами:

$$MP_K = amK^{m-1}L^n$$
, $MP_L = anK^mL^{n-1}$, $AP_K = aK^{m-1}L^n$, $AP_L = aK^mL^{n-1}$, $EZ_K = m$, $EZ_L = n$.

Если рассмотреть линию уровня функции Кобба-Дугласа Z=d , где d – произвольное положительное число, то

$$MRTS_{L,K} = \frac{MP_L}{MP_K} \bigg|_{aK^mL^n = d} = \frac{nK}{mL} \bigg|_{aK^mL^n = d}$$

Поскольку для произвольного положительного числа λ выполнено соотношение

$$Z(\lambda K, \lambda L) = a\lambda^{m+n}K^mL^n = \lambda^{m+n}Z(K, L)$$

то производственная функция Кобба-Дугласа является однородной функцией степени δ , где $\delta = m + n$.

• Функцию

$$Z_{\lambda} = \lambda^{\delta} Z(K, L)$$

называют продуктом масштаба производства.

- Число δ называют показателем масштаба производства.
- Средний продукт масштаба производства вычисляется по формуле

$$AZ_{\lambda} = \frac{\lambda^{\delta} Z(K, L)}{\lambda} = \lambda^{\delta - 1} Z(K, L).$$

• *Предельный* продукт масштаба производства вычисляется по формуле

$$MZ_{\lambda} = \frac{\partial \left(\lambda^{\delta} Z(K, L)\right)}{\partial \lambda} = \delta \lambda^{\delta - 1} Z(K, L).$$

• Для коэффициента эластичности масштаба производства справедливо соотношение

$$EZ_{\lambda} = \frac{MZ_{\lambda}}{AZ_{\lambda}} = \delta.$$

Кроме того, справедлива следующая формула:

$$\delta = EZ_K + EZ_L = EZ_{\lambda}.$$

8. ОДНОСЕКТОРНАЯ МОДЕЛЬ СОЛОУ С ПРОИЗВОДСТВЕННОЙ ФУНКЦИЕЙ КОББА-ДУГЛАСА

8.1. Исходные положения

Изучаемая модель основана на следующих положениях:

- 1. Рассматривается производственный сектор, производящий и частично потребляющий произведенную продукцию.
- 2. Выпуск продукции сектора в момент времени t ($t \ge 0$) задается производственной функцией Кобба-Дугласа

$$Z = aK^{m}L^{1-m}, (8.1.1)$$

где K = K(t), L = L(t), а a и m — известные числа, удовлетворяющие неравенствам 0 < a, 0 < m < 1.

- 3. Известна доля ρ выпуска продукции сектора, потребляемая им самим, т.е. число, заключенное в пределах $0 < \rho < 1$.
- 4. Конечный продукт сектора полностью расходуется на рост и восстановление капитала, что определяется формулой

$$(1-\rho)Z = K'(t) + \mu K(t), \tag{8.1.2}$$

где μ – известное число, удовлетворяющее неравенству $0 < \mu < 1$, и называемое коэффициентом восстановления капитала.

5. Трудовой ресурс задается формулой

$$L = L_0 e^{vt}$$
,

где L_0 и ν – известные положительные числа.

6. Известно начальное значение капитала $K(0) = K_0$.

Требуется найти зависимость выпуска продукции от времени Z = Z(t).

8.2. Расчетные уравнения

Исключая переменную Z из уравнений (8.1.1) и (8.1.2), получим следующее уравнение:

$$a(1-\rho)K^{m}L^{1-m} = K'(t) + \mu K(t). \tag{8.1.3}$$

Если в уравнении (8.1.3) совершить переход к новой переменной k по формуле

$$K = kL, (8.1.4)$$

то, в силу соотношения

$$K' = k'L + kL' = k'L + kvL$$

уравнение (8.1.3) преобразуется к виду:

$$a(1-\rho)k^{m}L = k'L + k(\nu + \mu)L.$$
 (8.1.5)

Разделив теперь все члены уравнения (8.1.5) на L, получим основное уравнение модели Солоу с производственной функцией Кобба-Дугласа:

$$k' = -(v + \mu)k + a(1 - \rho)k^{m}. \tag{8.1.6}$$

Заметив, что уравнение (8.1.6) является уравнением Бернулли, умножим все его члены на число (1-m) и разделим на выражение k^m . В результате уравнение примет следующий вид:

$$(1-m)k'k^{-m} = -(1-m)(\nu + \mu)k^{1-m} + a(1-m)(1-\rho). \tag{8.1.7}$$

Если теперь в уравнении (8.1.7) совершить замену переменной

$$q = k^{1-m}, (8.1.8)$$

то уравнение (8.1.7) преобразуется в линейное неоднородное уравнение первого порядка с постоянными коэффициентами относительно переменной q:

$$q' = -(1-m)(\nu + \mu)q + a(1-m)(1-\rho). \tag{8.1.9}$$

Уравнение (8.1.9) легко решается и его общее решение имеет вид

$$q = ce^{-(1-m)(\nu+\mu)t} + \frac{a(1-\rho)}{\nu+\mu},$$
(8.1.10)

где c — произвольное число. Для того, чтобы выразить число c через начальное значение капитала K_0 , воспользуемся следующими равенствами:

$$q(0) = c + \frac{a(1-\rho)}{\nu + \mu} = k^{1-m}(0) = \frac{K_0^{1-m}}{L_0^{1-m}}.$$

Следовательно,

$$c = \frac{K_0^{1-m}}{L_0^{1-m}} - \frac{a(1-\rho)}{\nu+\mu},$$

$$q = \left(\frac{K_0^{1-m}}{L_0^{1-m}} - \frac{a(1-\rho)}{\nu+\mu}\right) e^{-(1-m)(\nu+\mu)t} + \frac{a(1-\rho)}{\nu+\mu}.$$
(8.1.11)

Из формулы (8.1.11) с помощью формул (8.1.8) и (8.1.4) получаем

$$k = q^{\frac{1}{1-m}} = \left[\left(\frac{K_0^{1-m}}{L_0^{1-m}} - \frac{a(1-\rho)}{\nu + \mu} \right) e^{-(1-m)(\nu + \mu)t} + \frac{a(1-\rho)}{\nu + \mu} \right]^{\frac{1}{1-m}}, \quad (8.1.12)$$

$$K = kL = L_0 e^{\nu t} \left[\left(\frac{K_0^{1-m}}{L_0^{1-m}} - \frac{a(1-\rho)}{\nu + \mu} \right) e^{-(1-m)(\nu + \mu)t} + \frac{a(1-\rho)}{\nu + \mu} \right]^{\frac{1}{1-m}}.$$

Таким образом, зависимость капитала от времени выражается формулой

$$K(t) = L_0 e^{vt} \left[\left(\frac{K_0^{1-m}}{L_0^{1-m}} - \frac{a(1-\rho)}{v+\mu} \right) e^{-(1-m)(v+\mu)t} + \frac{a(1-\rho)}{v+\mu} \right]^{\frac{1}{1-m}},$$

следствием которой является формула для выпуска продукции:

$$Z = aK^{m}L^{1-m} = aK^{m} \left(L_{0}e^{vt}\right)^{1-m} =$$

$$= aL_{0}e^{vt} \left[\left(\frac{K_{0}^{1-m}}{L_{0}^{1-m}} - \frac{a(1-\rho)}{v+\mu}\right) e^{-(1-m)(v+\mu)t} + \frac{a(1-\rho)}{v+\mu} \right]^{\frac{m}{1-m}}.$$

Исследование модели завершено.

Замечание. Если в формуле (8.1.2) перейти к пределу при $t \to \infty$, то возникает предельное соотношение

$$\lim_{t\to\infty} k(t) = \left[\frac{a(1-\rho)}{\nu+\mu}\right]^{\frac{1}{1-m}},$$

которое используется при анализе ряда экономических явлений, описываемых моделью Солоу.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Что называется структурной матрицей международной торговли?
- 2. Что называется условием бездефицитной торговли?
- 3. Какие предположения лежат в основе модели международной торговли?
- 4. В чем состоит схема решения расчетных уравнений модели международной торговли?
- 5. Какие предположения лежат в основе статической *n* секторной балансовой модели Леонтьева?
- 6. Что называется технологической матрицей производственного комплекса?
- 7. Что называется коэффициентом прямых затрат?
- 8. Что называется коэффициентом полных затрат?
- 9. Что называется валовым продуктом?
- 10. Что называется конечным продуктом?
- 11. В чем состоит схема решения расчетных уравнений статической *n* секторной балансовой модели Леонтьева?
- 12. Какие предположения лежат в основе динамической односекторной балансовой модели Леонтьева с дискретным временем в случае переменного потребления?
- 13. В чем состоит схема решения расчетного уравнения динамической односекторной балансовой модели Леонтьева с дискретным временем в случае переменного потребления?
- 14. Какие предположения лежат в основе динамической односекторной балансовой модели Леонтьева с дискретным временем в случае постоянного потребления?
- 15. В чем состоит схема решения расчетного уравнения динамической односекторной балансовой модели Леонтьева с дискретным временем в случае постоянного потребления?

- 16. Какие предположения лежат в основе динамической односекторной балансовой модели Леонтьева с непрерывным временем в случае переменного потребления?
- 17. В чем состоит схема решения расчетного уравнения динамической односекторной балансовой модели Леонтьева с непрерывным временем в случае переменного потребления?
- 18. Какие предположения лежат в основе динамической односекторной балансовой модели Леонтьева с непрерывным временем в случае постоянного потребления?
- 19. В чем состоит схема решения расчетного уравнения динамической односекторной балансовой модели Леонтьева с непрерывным временем в случае постоянного потребления?
- 20. Какие предположения лежат в основе модели оптимизации состава покупки?
- 21. Что называется функцией полезности?
- 22. Что называется бюджетным множеством?
- 23. Что называется поверхностью (кривой) безразличия?
- 24. Что называется коэффициентом эластичности функции?
- 25. Что называется равновесной ценой на рынке одного товара?
- 26. Что называется средним значением функции?
- 27. Что называется предельным значением функции в экономике?
- 28. Какие предположения лежат в основе модели Эванса с непрерывным временем?
- 29. В чем состоит схема решения расчетного уравнения модели Эванса с непрерывным временем?
- 30. Какие предположения лежат в основе модели Эванса с дискретным временем?
- 31. В чем состоит схема решения расчетного уравнения модели Эванса с дискретным временем?

- 32. Что называется производственной функцией?
- 33. Что называется производственной функцией Кобба-Дугласа?
- 34. Что называется продуктом масштаба производства?
- 35. Что называется показателем масштаба производства?
- 36. По каким формулам вычисляются средние значения производственной функции Кобба-Дугласа по факторам производства?
- 37. По каким формулам вычисляются предельные значения производственной функции Кобба-Дугласа по факторам производства?
- 38. Что называется коэффициентом эластичности масштаба производства?
- 39. Какие предположения лежат в основе односекторной модели Солоу с производственной функцией Кобба-Дугласа?
- 40. В чем состоит схема решения расчетного уравнения односекторной модели Солоу с производственной функцией Кобба-Дугласа?

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Структурная матрица международной торговли трех стран имеет вид

$$A = \begin{pmatrix} 0,2 & 0,3 & 0,5 \\ 0,3 & 0,5 & 0,2 \\ 0,5 & 0,2 & 0,3 \end{pmatrix}.$$

Суммарный национальный доход этих стран равен 1800. Найти национальные доходы стран.

2. Выпуск продукции производственного комплекса описывается статической двухсекторной моделью Леонтьева. Технологическая матрица имеет вид

$$\begin{pmatrix} 0,2 & 0,1 \\ 0,4 & 0,3 \end{pmatrix},$$

а вектор конечной продукции имеет вид

$$\binom{50}{14}$$
.

Найти вектор выпуска продукции.

- 3. Выпуск продукции производственного сектора описывается динамической моделью Леонтьева с дискретным временем (случай переменного потребления). 30% годового выпуска продукции сектора потребляется самим сектором, 30% поставляется внешнему потребителю, а оставшаяся часть расходуется на инвестиции, причем инвестиции составляют 20% прироста годового выпуска продукции. В первый год выпуск продукции равен 4. Найти выпуск продукции в 5-м году.
- **4.** Выпуск продукции производственного сектора описывается динамической моделью Леонтьева с дискретным временем (случай постоянного потребления). 25% годового выпуска продукции сектора потребляется самим сектором, ежегодная поставка продукции внешнему потребителю равна 15, а оставшаяся часть расходуется на инвестиции,

ООО «Резольвента», <u>www.resolventa.ru</u>, <u>resolventa@list.ru</u>, (495) 509-28-10 причем инвестиции составляют 25% прироста годового выпуска продукции. В первый год выпуск продукции равен 22. Найти выпуск продукции в 6-м году.

- 5. Выпуск продукции производственного сектора описывается динамической моделью Леонтьева с непрерывным временем (случай переменного потребления). 20% выпуска продукции сектора потребляется самим сектором, 20% поставляется внешнему потребителю, а оставшаяся инвестиции, причем часть расходуется на инвестиции пропорциональны с коэффициентом 0,4 скорости выпуска продукции. В момент времени t = 0 выпуск продукции равен 3. Найти выпуск продукции в момент времени t = 4.
- 6. Выпуск продукции производственного сектора описывается динамической моделью Леонтьева с непрерывным временем (случай постоянного потребления). 25% выпуска продукции сектора потребляется самим сектором, поставка продукции внешнему потребителю равна 15, а оставшаяся часть расходуется на инвестиции, причем инвестиции прямо пропорциональны с коэффициентом 0,25 скорости выпуска продукции. В момент времени t=0 выпуск продукции равен 24. Найти выпуск продукции в момент времени t=2.
- 7. Покупатель собирается купить x единиц одного товара по цене 50 руб. за единицу и y единиц другого товара по цене 70 руб. за единицу, истратив на всю покупку не более 1400 рублей. Функция полезности этих товаров задается формулой

$$u = u(x, y) = 4xy.$$

Найти оптимальный состав покупки, доставляющий максимум функции полезности.

8. Процесс установления равновесной цены на рынке одного товара описывается моделью Эванса с непрерывным временем. Функции спроса и предложения заданы формулами

$$D(p) = 11 - 3p$$
, $S(p) = 3 + 2p$,

соответственно, где p=p(t) — цена товара в момент времени t . Скорость изменения цены товара прямо пропорциональна с коэффициентом пропорциональности $\frac{1}{5}$ разности спроса и предложения. В начальный момент времени t=0 цена товара равна 7. Найти цену товара в момент времени t=1.

9. Процесс установления равновесной цены на рынке одного товара описывается моделью Эванса с дискретным временем. Товар поступает на рынок в течение нескольких равных промежутков времени. В течение i - го промежутка времени цена товара не изменяется и обозначается p_i , а спрос и предложение заданы формулами

$$D_i = 11 - 3p_i$$
, $S_i = 3 + 2p_{i-1}$,

соответственно. В начальный момент времени цена товара известна: $p_0 = 4$. Найти равновесную цену товара p_4 .

10. Выпуск продукции производственного сектора описывается моделью Солоу с производственной функцией Кобба-Дугласа

$$Z = 3K^{\frac{1}{2}}L^{\frac{1}{2}}.$$

Трудовой ресурс определяется формулой $L=3e^t$, где t — время. 40% выпуска продукции сектора потребляется самим сектором, коэффициент восстановления капитала равен 0,8. В момент времени t=0 начальное значение капитала равно 12. Найти выпуск продукции в момент времени t=3.

ЛИТЕРАТУРА

Основная:

- 1. Вентцель Е.С. Исследование операций: Задачи, принципы, методология. Учебное пособие. – М.: Дрофа, 2004.
- 2. Колемаев В.А. Математическая экономика. Учебник для вузов. М.: ЮНИТИ-ДАНА, 2005.
- 3. Кремер Н.Ш. Исследование операций в экономике. М.: ЮНИТИ, 2006.
- Орехов Н.А., Левин А.Г., Горбунов Е.А. Математические методы и модели в экономике. Учебное пособие для вузов / Под ред. проф. Н.А. Орехова М.: ЮНИТИ-ДАНА, 2004.

Дополнительная:

- 5. Экономико-математическое моделирование. Учебник для вузов / Под общ. ред. И.Н. Дрогобыцкого. М.: Изд. «Экзамен», 2004.
- 6. Макоха А.Н., Сахнюк П.А., Червяков Н.И. Дискретная математика: Учебное пособие – М.: Физматлит, 2005.
- 7. Малыхин В.И. Математика в экономике: Учебное пособие. М.: ИНФРА-М, 2002.
- Самаров К.Л., Шапкин А.С. Задачи с решениями по высшей математике и математическим методам в экономике: Учебное пособие М.: Издательско-торговая корпорация «Дашков и К°», 2007.
- 9. Таха Х.А. Введение в исследование операций. М.: ВИЛЬЯМС, 2007.